Деловые новости
Экономика и финансы
Криминал
Оценка деловых рисков
Аналитические обзоры
Оценка деловых рисков
Оффшоры
Корпоративная безопасность
Платежные средства
Портфель руководителя СЭБ
Базы данных
Законы
Подписка на новости
Для подписки на новости введите ваш e-mail:
Вы можете просматривать анонсы наших новостей и статей на мобильных устройствах с нашей rss ленты
Курсы валют
24.06.202225.06.2022
$53,357853,3234 
55,988655,9640 
все курсы валют
Корпоративная безопасность | Портфель руководителя СЭБ | Технические средства
Бизнес-разведка | Безопасность | Защита информации | Технические средства

«Умные» датчики для Интеллектуальных Систем Безопасности


Барсуков В. С. к.т.н., Рычков С. А.

Журнал «Специальная техника», №6, 2004г.

Рассматриваются состояние, возможности использования и перспективы развития современных датчиков (сенсоров) тревожной сигнализации, используемых в интеллектуальных системах обеспечения безопасности. Основными тенденциями развития современных систем безопасности (СБ) являются процессы автоматизации, интеграции и информатизации на основе искусственного интеллекта. Наиболее полно эти тенденции проявляются в развитии современных датчиков тревожной сигнализации (ДТС) для систем безопасности.

Обеспечение безопасности и жизнедеятельности включает в себя широкую сферу деятельности, направленную на защиту от различного вида угроз, источником которых (и объектом защиты) могут выступать: человек, природа и техногенная среда (все, что создано человеком),

Известно, что при организации системы физической защиты объекта используется классический принцип последовательных рубежей, при нарушении которых угрозы будут своевременно обнаружены и их распространению будут препятствовать надежные преграды. Такие рубежи (зоны безопасности) должны располагаться последовательно, например от забора вокруг территории объекта до главного, особо важного помещения. Оптимальное расположение зон безопасности и размещение в них эффективных технических средств защиты (обнаружения и противодействия) и составляют основу концепции физической защиты любого объекта. Как правило, при организации системы физической защиты объектов наиболее часто используется трехрубежная схема физической защиты.

Как известно, основным звеном системы физической защиты является подсистема обнаружения (охранной сигнализации), состоящая из датчиков (извещателей), cpедств передачи извещений, приемно-контрольных приборов и пультов централизованного наблюдения. Важнейшим компонентом подсистемы обнаружения являются датчики тревожной сигнализации, характеристики которых определяют основные параметры всей системы защиты. Поскольку каждый рубеж защиты выполняет свои задачи и имеет свои особенности, дальнейший анализ датчиков тревожной сигнализации, используемых в системах физической защиты объектов, проведен с учетом этих особенностей.

Датчики тревожной сигнализации для обеспечения физической защиты объектов

При конструировании системы защиты одной из центральных задач является выбор оптимальных средств оповещения, и в первую очередь датчиков тревожной сигнализации. В настоящее время разработано и используется большое количество самых разнообразных датчиков тревожной сигнализации. Рассмотрим кратко принципы действия, отличительные особенности и способы применения наиболее распространенных из них. Классификация современных датчиков тревожной сигнализации для обеспечения физической защиты представлена ниже.

Датчики первого рубежа защиты:

  • по наличию излучения (пассивные, активные);
  • по скрытности (маскируемые, немаскируемые);
  • по принципу работы (натяжного действия, высокочастотные кабельные, инфраакустические, волоконнооптические, электрического поля, вибрационные, сейсмомагнитные, сейсмические /пьезоэлектрические, водяные/, электретные, электромеханические выключатели /разрушающиеся, неразрушающиеся/, микроволновые /контроля пространства/, инфракрасные /контроля пространства/, фотоэлектрические, магнитные /электросетка/, комбинированные, составные и др.

Датчики второго рубежа защиты:

  • магнитные выключатели (герконы);
  • фотовыключатели;
  • проволочные сетки;
  • ультразвуковые (пассивные, активные);
  • емкостные;
  • фотоэлектрические;
  • комбинированные, составные и др.

Датчики третьего рубежа защиты:

  • микроволновые (контроля помещений);
  • инфракрасные (контроля помещений);
  • ультразвуковые (контроля помещений) – однокорпусные, двухкорпусные;
  • барометрические (для закрытых объемов);
  • фотоэлектрические;
  • акустические (с микрофоном);
  • комбинированные;
  • другие.

Анализ технических характеристик современных датчиков показывает, что по мере внедрения микропроцессоров ДТС становились все более интеллектуальными (обладающими искусственным интеллектом). В настоящее время хорошие интеллектуальные возможности имеют так называемые датчики с двойной технологией, т.е. комбинированные датчики. Эти возможности можно проиллюстрировать на примере микропроцессорного охранного датчика двойной технологии DS970 фирмы Detection Systems.

Данный датчик объединяет в себе пассивный инфракрасный детектор с линзой Френеля и микроволновый детектор на эффекте Доплера. Он имеет два типа диаграммы направленности: стандартную (21х21 м) и «Луч» -30х3 м. Хорошая адаптируемость к различным внешним условиям достигается за счет независимой регулировки чувствительности каждого из детекторов. Сигнал тревоги формируется при условии, что инфракрасный и микроволновый детекторы одновременно зарегистрировали нарушение в своей зоне охраны. При этом амплитуда и временные параметры для каждого из детекторов должны соответствовать состоянию тревоги. Далее сигнал от ИК-детектора обрабатывается схемой «Анализатор движения», проверяющей форму и временные характеристики сигнала. Микропроцессор автоматически подстраивается под скорость движения и амплитуду его сигнала. Этот анализатор не дает ложных срабатываний на возмущения, вызванные горячими и холодными воздушными потоками, работой нагревательных приборов и кондиционеров, воздействием помех от солнечного света, молний и света автомобильных фар. «Анализатор движения» обеспечивает два уровня чувствительности ИК-детектора.

Схема регистрации и обработки сигнала микроволнового детектора идентифицирует и блокирует источники повторяющихся ложных срабатываний и обеспечивает гибкую адаптацию к фоновым возмущениям. Используем алгоритм работы значительно уменьшает вероятность ложной тревоги и сохраняет высокую надежность peгистрации реального нарушения зоны охраны. Кроме всего прочего, данный датчик обеспечивает также «защиту от маскирования», функцию «контроль присутствия», защиту от вскрытия и автоматическое самотестирование ИК- и МВ-детекторов.

Характерной тенденцией мирового технологического развития последнего десятилетия явилось зарождение интегральных, в том числе микросистемных, технологий. Инициирующим фактором, способствующим динамичному развитию микросистемной техники, стало появление так называемых микроэлектромеханических систем -МЭМС, в которых гальванические связи находятся в тесном взаимодействии с механическими перемещениями. Особенностью МЭМС является то обстоятельство, что в них электрические и механические узлы формируются из общего основания (например, кремниевой подложки), причем в результате использования технологии формирования объемных структур обеспечивается получение микросистемной техники с высокими оперативно-техническими характеристиками (массогабаритными, весовыми, энергетическими и др.), что сразу же привлекло к себе внимание специалистов — разработчиков спецтехники. Использование МЭМС-технологи и в современных электронных системах позволяет значительно увеличить их функциональность. Используя технологические процессы, почти не отличающиеся от производства кремниевых микросхем, разработчики МЭМС-устройств создают миниатюрные механические структуры, которые могут взаимодействовать с окружающей средой и выступать в роли датчиков, передающих воздействие в интегрированную с ними электронную схему. Именно датчики являются наиболее распространенным примером использования МЭМС- технологии: они используются в гироскопах, акселерометрах, измерителях давления и других устройствах. В настоящее время почти все современные автомобили используют МЭМС-акселерометры для активации воздушных подушек безопасности. Микроэлектромеханические датчики давления широко используются в автомобильной и авиационной промышленности. Гироскопы находят применение во множестве устройств, начиная со сложного навигационного оборудования космических аппаратов и за-канчивая джойстиками для компьютерных игр. МЭМС-устройства с микроскопическими зеркалами используются для производства дисплеев и оптических коммутаторов. Микрокоммутаторы и резонансные устройства, выполненные по МЭМС-технологии, демонстрируют меньшие омические потери и высокую добротность при уменьшении потребляемой мощности и габаритов, лучшей повторяемости и более широком диапазоне варьируемых параметров. В биотехнологии применение МЭМС-устройств позволяет создавать дешевые, но производительные однокристальные устройства для расшифровки цепочек ДНК, разработки новых лекарственных и других специальных препаратов («лаборатория на кристалле»). Кроме того, не-обходимо также отметить емкий рынок струйных принтеров, в картриджах которых используются микрожидкостные МЭМС-устройства, создающие и выпускающие микрокапли чернил под управлением электрических сигналов. По мнению экспертов, развитие микросистемной техники может иметь такое же влияние на научно-технический прогресс, какое оказало появление микроэлектроники на становление и современное состояние ведущих областей науки и техники.

В ближайшее время можно ожидать создания микросистемных датчиков для приборов определения различных запахов, что, безусловно, существенно активизирует криминалистику и будет способствовать решению проблемы биометрической бесконтактной идентификации личности и контроля несанкци-онированного доступа НСД.

Примеры решения нетрадиционных задач с использованием ДТС

Современные возможности решения нетрадиционных задач с использованием ДТС рассмотрим на примерах организации скрытого контроля несанкционированного доступа в помещение.

Скрытый контроль несанкционированного доступа в помещение с использованием ИК-канала

Пожалуй, самым простым вариантом организации скрытого контроля НСД в помещение является использование двух портативных персональных компьютеров (ППК). В качестве ППК могут быть использованы компьютеры любого класса, имеющие стандартный инфракрасный порт, соответствующий требованиям Infared Data Association (IrDA) и обеспечивающий беспроводную передачу данных. Для решения поставленной задачи ППК используются в закрытом состоянии при экономичном режиме работы от внутреннего аккумулятора. Единственное условие требует прямой видимости между ИК-портами ППК. При необходимости может быть использовано бытовое зеркало.

Возможны также другие варианты бесконтактного контроля НСД с использованием периферийных устройств, имеющих стандартный ИК-порт. Специальное программное обеспечение может быть выполнено подготовленным пользователем на языке высокого уровня. При необходимости возможно срочное автоматическое оповещение пользователя с указанием времени НСД (SMS-сообщение по мобильному телефону (МТ)). Данный вариант реализуется в режиме беспроводной связи без кабельного подключения МТ к ППК. МТ кратковременно включается в момент НСД.

Скрытый контроль несанкционированного доступа в помещение с использованием микровидеокамеры При решении данной задачи возможны следующие основные варианты.

Используется бытовой ППК со встроенной микровидеокамерой (МВК)

В этом случае ППК в автономном режиме ведет постоянную съемку места возможного несанкционированного доступа (например, дверей) с записью на жесткий диск компьютера. При необходимости срочного оповещения о НСД используется программа анализа изображения, которая при изменении изображения (появлении НСД) выдает команду на передачу SMS-сообщения о НСД с указанием времени нарушения.

Используется бытовой ППК с внешней микровидеокамерой

В этом случае используется любой бытовой ППК с подключенной внешней микровидеокамерой (возможен вариант с WEB-камерой, подключенной через USB-порт к ППК, и беспроводным выходом в Интернет), Конкретные варианты реализации скрытого контроля НСД в помещение с использованием общедоступных технических средств, в том числе и различные комбинации из рассмотренных выше вариантов, определяются решаемыми задачами, возможностями и конкретной оперативной обстановкой.

Используется комбинированный_датчик Micro-Foto

Логичный вывод о необходимости интеграции ИК-датчиков с видеокамерой для обнаружения НСД в контролируемый объект реализован сегодня в аппаратуре Micro-Foto. С ее использованием можно обеспечить:

  • эффективный камуфляж, не привлекающий внимания, — в виде типового датчика охранной сигнализации;
  • круглосуточный видеоконтроль объектов;
  • скрытую фотосъемку с автоматическим включением сигналами встроенных датчиков движения ИК- и видео-детектора;
  • накопление до 20 000 фотокадров на съемную миниатюрную Flash-карточку;
  • ввод отснятого материала с карточки в ПЭВМ через стандартный порт;
  • просмотр фотокадров на компьютере, их редактирование и архивирование;
  • программирование параметров съемки, в том числе установку качества кадров, адаптацию к освещенности объекта по контрасту и яркости, задание количества кадров, снимаемых по срабатыванию детекторов, и др.;
  • кодовый доступ с помощью ИК-пульта.

Съемка осуществляется автоматически скрытой микро-видеокамерой по командам с ИК- и видеодетекторов. Пользователю аппаратуры достаточно лишь установить кронштейн, на котором располагается аппаратура Micro-Foto в виде типового охранного датчика, и подключить адаптер к сети. Для просмотра и анализа фотокадров необходимо снять Flash-карточку с изделия Micro-Foto и загрузить отснятый материал в компьютер.

Тенденции и перспективы развития датчиков тревожной сигнализации

По результатам проведенных исследований можно сделать краткий вывод о том, что современным датчикам тревожной сигнализации присущи следующие основные тенденции развития:

  • интеграция различных принципов действия (например, двойной технологии: инфракрасный и микроволновый в одном корпусе);
  • интеграция датчиков со средствами связи;
  • микросистемная интеграция;
  • использование компьютерной (микропроцессорной) об-работки;
  • наличие искусственного интеллекта;
  • децентрализация, самотестирование и автономность работы.

Пожалуй, наиболее революционные изменения в оперативно-технических характеристиках датчиков произошли после внедрения микропроцессорной обработки сигналов (МПОС), которая позволила обеспечить в дальнейшем все перечисленные выше тенденции развития. Этот вывод можно подтвердить на примере современных датчиков «разбития стекла», использующих микропроцессорный анализатор сигналов, распознающий характерные спектральные составляющие, возникающие при разбивании стекла.

В частности, датчики серии DS1100 фирмы Detection Systems используют микропроцессорный анализатор сигналов, который контролирует аналоговый сигнал в широком спектре частот. Включение тревоги происходит только в том случае, если спектральные составляющие сигнала и их временная динамика изменения соответствуют набору справочных данных. В этом случае снижается вероятность ложной тревоги и гарантируется надежная работа датчика в сложных условиях. Данные датчики предназначены для защиты простых, закаленных и армированных стекол, а также стекол с пленочным покрытием. Режим тестирования позволяет проводить проверку уровня внешних шумов, осуществлять раздельный контроль уровня инфранизких и высокочастотных шумов и определять место оптимального расположения датчика даже в сложных условиях.

Рассматривая перспективы развития ДТС, нельзя не остановиться на эффективных тонкопленочных магниторезистивных датчиках, в которых используется магниторезистивный эффект, т.е. изменение электрического сопротивления материала под воздействием внешнего магнитного поля. Основными элементами структуры датчика являются два ферромагнитных слоя, изготовленных из сплавов Со, Ni, Fe и разделенных прослойкой немагнитного металла — Сu, Аg, Аu и др. В качестве фиксирующего слоя, создающего обменное взаимодействие с ближайшим ферромагнитным слоем для его фиксации, обычно используются пленки FeMn, FeIr, NiO.

Среди областей применения магниторезистивных датчиков можно отметить устройства для измерения напряженности постоянного и переменного магнитного поля (магнитометры), навигационные приборы (электронные компасы), измерители тока, устройства гальванической развязки, датчики углового и линейного положений, линейки (матрицы) датчиков для диагностики печатных плат и изделий из ферромагнитных материалов, датчики для автомобилей (тахометры), комбинированные головки воспро-изведения для магнитных дисков и лент, системы безопасности.

Пожалуй, наиболее сильное влияние на развитие ДТС в последние годы оказали фотоэлектрические приборы с переносом заряда (ФППЗ). В этих твердотельных приборах зарядовые пакеты передаются к выходному устройству вследствие перемещения положения потенциальных ям. Пороговая чувствительность ФПЗС соответствует восприятию изображения объекта при свете звезд. В настоящее время ФПЗС являются основной элементной базой в следующих областях:

  • бытовые телевизионные системы (форматы VHS, SVHS, НDТV и др.);
  • специализированные телевизионные системы: охрана, медицина, анализ движущихся изображений, научные исследования, транспорт;
  • техническое зрение роботов;
  • устройства ввода изображения в ЭВМ:
  • цифровые фотокамеры;
  • бесконтактные измерительные устройства;
  • наземная и космическая астрономия;
  • дистанционное зондирование Земли из космоса:
  • системы безопасности.

Одним из направлений дальнейшего развития ДТС является поиск принципиально новых подходов к созданию современных датчиков. В качестве примера рассмотрим реализацию устройства защиты от несанкционированного доступа человека в контролируемую зону на основе торсионных взаимодействий. Данное устройство разработано в Пензенском государственном университете (ПГУ). В настоящее время для защиты от НСД используются различные датчики обнаружения перемещения объекта, в том числе основанные на эффекте Доплера. Основным недостатком таких датчиков является возможность отказа в работе, если скорость перемещения становится ниже граничной. Поэтому весьма актуальной проблемой явля-ется поиск новых принципов обнаружения медленных и очень медленных (до сантиметра в час) перемещений человека в контролируемом секторе на расстоянии нескольких метров. Разработчики из ПГУ использовали тот факт, что человек является биологическим объектом, имеющим комплексное биополе, в состав которого входит энергоинформационная составляющая, поэтому его можно рассматривать как источник сложного торсионного поля. В теории энергоинформационного взаимодействия известен эффект изменения хода часов при воздействии внешнего торсионного поля. Поэтому в качестве основы датчика, реагирующего на изменение торсионной обстановки в помещении при появлении человека, был взят датчик времени с электронным задающим генератором. В ходе экспериментов была также разработана методика исследований, позволившая выделить торсионное воздействие среди прочих. В течение трех лет велась работа по созданию элементов, чувствительных к воздействию торсионных полей, и выявлению их влияния на чувствительность и пространственную избирательность датчика Разработанный датчик торсионного поля был подвергнут тщательным экспериментальным исследованиям в результате которых было установлено:

  • электронный датчик времени, помещенный в многослойный заземленный электромагнитный экран-корпус, реагирует на перемещения человека относительно датчика на расстоянии нескольких метров;
  • наблюдаемая величина реакции датчика на перемещения человека, выраженная относительным изменением периода или частоты задающего генератора, может быть использована в различных практических приложе ниях;
  • различные схемотехнические и конструкционные решения позволяют получить свойство пространственно» направленности датчика, а также повысить его чувствительность.

Полученные практические результаты по созданию датчика торсионного поля являются весьма многообещающими и представляют несомненный интерес для разработчиков не только средств защиты от вредных полей, но также и средств контроля НСД к различным объектам.

Таким образом, датчики тревожной сигнализации, являющиеся обязательным звеном любой современной системы безопасности, определяют основные оперативно-технические характеристики СБ, динамично развиваются и имеют хорошие перспективы дальнейшего развития.

Выводы

Анализ состояния и тенденций развития датчиков тревожной сигнализации для защиты от несанкционированного доступа в контролируемые помещения показал следующее.

  1. В настоящее время ДТС являются наиболее динамически развивающимися компонентами систем физической защиты объектов.
  2. Наилучшие характеристики из всех существующих имеют интегральные ДТС с двойной и тройной технологией.
  3. Весьма перспективными для решения нетрадиционных задач физической защиты помещений являются микросистемные и торсионные датчики, в частности для биометрической бесконтактной идентификации.
  4. Основными направлениями дальнейшего развития ДТС являются интеграция, микропроцессорная обработка, искусственный интеллект, самотестирование, децентрализация, внедрение новых физических явлений и процессов.
  5. Весьма эффективно использование ДТС при решении нетрадиционных задач физической защиты помещений.
  6. Новые микроэлектронные технологии существенно влияют на состав и технические характеристики современных ДТС, в частности использование твердотельных фотоэлектрических датчиков с зарядовой связью позволяет оптимально интегрировать систему охранного телевидения в систему физической защиты объекта.

___________

Источник — OXPAHA.ru

Поиск по разделу
© 2000—2018 Институт экономической безопасности, e-mail: webmaster@bre.ru